Power MOSFET

68 A, 30 V, N-Channel DPAK/IPAK

Features

- Ultra Low R_{DS(on)}
- Higher Efficiency Extending Battery Life
- Logic Level Gate Drive
- Diode Exhibits High Speed, Soft Recovery
- Avalanche Energy Specified
- I_{DSS} Specified at Elevated Temperature
- DPAK Mounting Information Provided
- These Devices are Pb-Free and are RoHS Compliant

Applications

- DC-DC Converters
- Low Voltage Motor Control
- Power Management in Portable and Battery Powered Products: i.e., Computers, Printers, Cellular and Cordless Telephones, and PCMCIA Cards

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	30	Vdc
Gate-to-Source Voltage - Continuous	V_{GS}	±20	Vdc
Thermal Resistance – Junction–to–Case Total Power Dissipation @ $T_C = 25^{\circ}C$ Continuous Drain Current @ $T_C = 25^{\circ}C$ (Note 4) Continuous Drain Current @ $T_C = 100^{\circ}C$	R ₀ JC P _D I _D	1.65 75 68 43	°C/W W A A
Thermal Resistance – Junction–to–Ambient (Note 2) Total Power Dissipation @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 25^{\circ}C$ Continuous Drain Current @ $T_A = 100^{\circ}C$ Pulsed Drain Current (Note 3)	R _{θJA} PD ID ID IDM	67 1.87 11.3 7.1 36	°C/W W A A
Thermal Resistance – Junction–to–Ambient (Note 1) Total Power Dissipation @ T _A = 25°C Continuous Drain Current @ T _A = 25°C Continuous Drain Current @ T _A = 100°C Pulsed Drain Current (Note 3)	R _{θJA} PD I _D I _D	120 1.04 8.4 5.3 28	°C/W W A A A
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Pulse Drain–to–Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 30 Vdc, V_{GS} = 10 Vdc, Peak I_L = 17 Apk, L = 5.0 mH, R_G = 25 Ω)	E _{AS}	722	mJ
Maximum Lead Temperature for Soldering Purposes, 1/8 in from case for 10 seconds	TL	260	°C

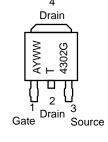
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

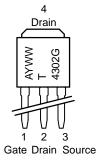
- 1. When surface mounted to an FR4 board using the minimum recommended pad size. When surface mounted to an FR4 board using 0.5 sq. in. drain pad size.
- 3. Pulse Test: Pulse Width = 300 μs, Duty Cycle = 2%.
- 4. Current Limited by Internal Lead Wires.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	BR)DSS R _{DS(on)} TYP	
30 V	7.8 m Ω @ 10 V	68 A





IPAK CASE 369D (Straight Lead) STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENTS

= Assembly Location* = Year WW = Work Week T4302 = Device Code = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

^{*} The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain-Source Breakdown Voltage						Vdc
$(V_{GS} = 0 \text{ Vdc}, I_D = 250 \mu\text{A})$ Positive Temperature Coefficient			30	- 25	_	mV/°C
Zero Gate Voltage Drain Current		I _{DSS}				μAdc
$(V_{GS} = 0 \text{ Vdc}, V_{DS} = 30 \text{ Vdc}, T_{J} $ $(V_{GS} = 0 \text{ Vdc}, V_{DS} = 30 \text{ Vdc}, T_{J} $			_	_	1.0 10	
Gate-Body Leakage Current (V _{GS}		l	_		±100	nAdc
ON CHARACTERISTICS	= ±20 vdc, v _{DS} = 0 vdc)	I _{GSS}	_		±100	HAGC
Gate Threshold Voltage		Vacus				Vdc
$(V_{DS} = V_{GS}, I_D = 250 \mu\text{Adc})$		V _{GS(th)}	1.0	1.9	3.0	Vuc
Negative Temperature Coefficient			_	-3.8	_	
Static Drain-Source On-State Res	sistance	R _{DS(on)}				Ω
$(V_{GS} = 10 \text{ Vdc}, I_D = 20 \text{ Adc})$			_	0.0078	0.010	
$(V_{GS} = 10 \text{ Vdc}, I_D = 10 \text{ Adc})$ $(V_{GS} = 4.5 \text{ Vdc}, I_D = 5.0 \text{ Adc})$			_	0.0078 0.010	0.010 0.013	
Forward Transconductance (V _{DS} =	= 15 Vdc. In = 10 Adc)	gFS	_	20	_	Mhos
DYNAMIC CHARACTERISTICS			1	<u>.</u>	<u> </u>	
Input Capacitance		C _{iss}	-	2050	2400	pF
Output Capacitance	$(V_{DS} = 24 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, f = 1.0 \text{ MHz})$	C _{oss}	_	640	800	
Reverse Transfer Capacitance	I = 1.0 MH2)	C _{rss}	_	225	310	
SWITCHING CHARACTERISTICS	(Note 6)		· •	•		
Turn-On Delay Time		t _{d(on)}	_	11	20	ns
Rise Time	$(V_{DD} = 25 \text{ Vdc}, I_{D} = 1.0 \text{ Adc},$	t _r	_	15	25	
Turn-Off Delay Time	$V_{GS} = 10 \text{ Vdc},$ $R_G = 6.0 \Omega)$	t _{d(off)}	_	85	130	
Fall Time	1 (G = 0.0 s2)	t _f	_	55	90	
Turn-On Delay Time		t _{d(on)}	_	11	20	ns
Rise Time	$(V_{DD} = 25 \text{ Vdc}, I_{D} = 1.0 \text{ Adc},$	t _r	_	13	20	
Turn-Off Delay Time	$V_{GS} = 10 \text{ Vdc},$ $R_G = 2.5 \Omega)$	t _{d(off)}	_	55	90	
Fall Time	- 11.G = 2.0 s2)	t _f	_	40	75	
Turn-On Delay Time		t _{d(on)}	_	15	-	ns
Rise Time	$(V_{DD} = 24 \text{ Vdc}, I_D = 20 \text{ Adc},$	t _r	_	25	_	
Turn-Off Delay Time	$V_{GS} = 10 \text{ Vdc},$ $R_G = 2.5 \Omega)$	t _{d(off)}	_	40	_	
Fall Time	11.G = 2.0 32)	t _f	_	58	_	
Gate Charge		Q _T	_	55	80	30 nC
	$(V_{DS} = 24 \text{ Vdc}, I_{D} = 2.0 \text{ Adc},$	Q _{gs} (Q1)	_	5.5	-	
	V _{GS} = 10 Vdc)	Q _{gd} (Q2)	_	15	-	
BODY-DRAIN DIODE RATINGS (N	lote 5)					
Diode Forward On-Voltage		V _{SD}				Vdc
$(I_S = 2.3 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 20 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 2.3 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$			_	0.75	1.0	
			_	0.90 0.65		
Reverse Recovery Time	120 0/	t	_	39	65	ns
NOVOIGO NOCOVOIY IIIIIO	$(I_S = 2.3 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	t _{rr}	_	20		- 113
	$dI_{S}/dt = 100 \text{ A/}\mu\text{s})$	t _a	_	19	_	
Payarea Pacayary Stared Charge			_	0.043	_	C
Reverse Recovery Stored Charge	ndicated in the Electrical Characteristics	Q _{rr}				μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics for the listed test conditions.

5. Indicates Pulse Test: Pulse Width = 300 μsec max, Duty Cycle ≤ 2%.

6. Switching characteristics are independent of operating junction temperature.

TYPICAL CHARACTERISTICS

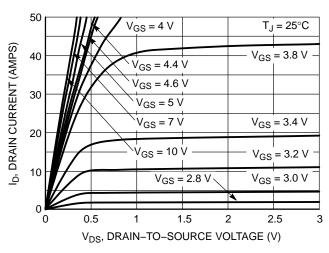


Figure 1. On-Region Characteristics

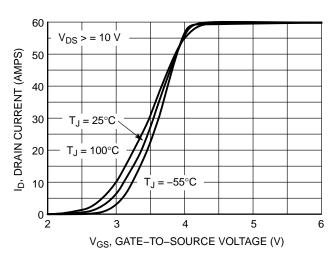


Figure 2. Transfer Characteristics

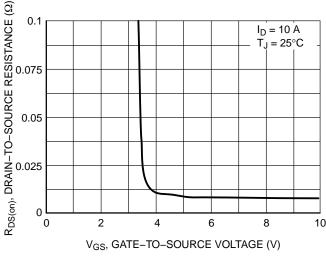


Figure 3. On–Resistance vs. Gate–To–Source Voltage

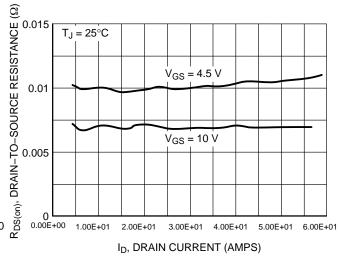


Figure 4. On–Resistance vs. Drain Current and Gate Voltage

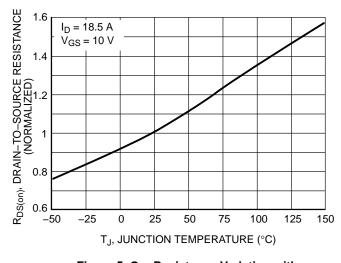


Figure 5. On–Resistance Variation with Temperature

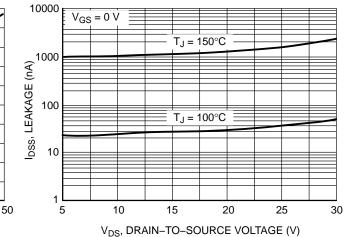


Figure 6. Drain-To-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

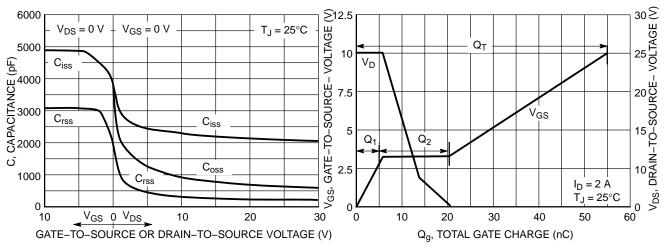


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

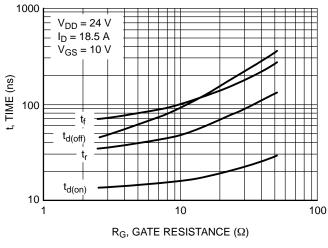


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

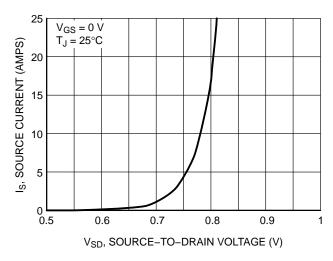
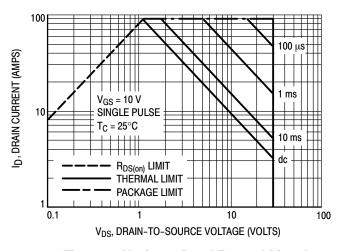



Figure 10. Diode Forward Voltage vs. Current

TYPICAL CHARACTERISTICS

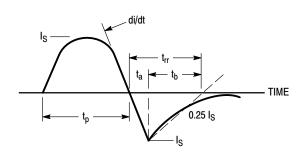


Figure 11. Maximum Rated Forward Biased Safe Operating Area

Figure 12. Diode Reverse Recovery Waveform

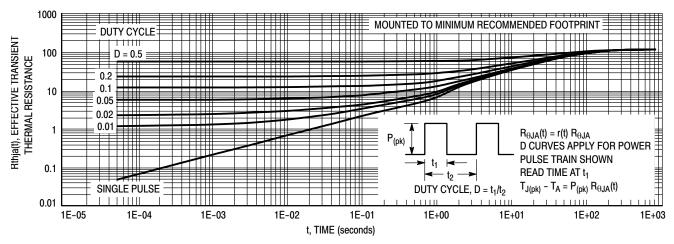
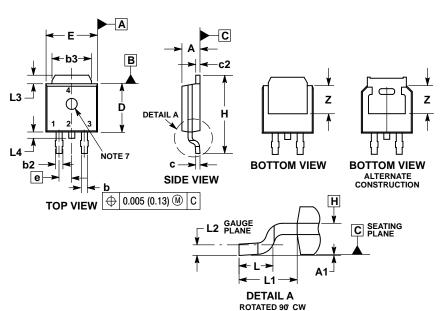


Figure 13. Thermal Response - Various Duty Cycles

ORDERING INFORMATION


Device	Package Type	Package	Shipping [†]
NTD4302G	DPAK	369C (Pb-Free)	75 Units / Rail
NTD4302-1G	IPAK	369D (Pb-Free)	75 Units / Rail
NTD4302T4G	DPAK	369C (Pb-Free)	2500 Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C ISSUE E

NOTES:

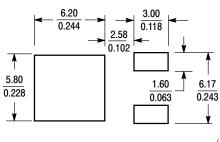
- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

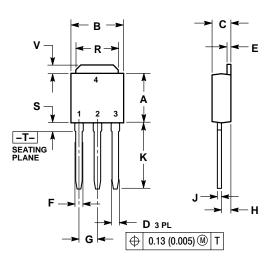

 5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

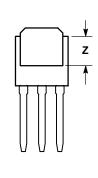
 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.
- 7. OPTIONAL MOLD FEATURE.

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.028	0.045	0.72	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29 BSC		
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.114 REF		2.90	2.90 REF	
L2	0.020 BSC		0.51	BSC	
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

SOLDERING FOOTPRINT*




 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 3:1

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

IPAK CASE 369D ISSUE C

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
С	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	0.88	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	0.090 BSC		29 BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
Κ	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
Z	0.155		3.93		

STYLE 2: PIN 1. GATE 2. DRAIN

- SOURCE
- 4 DRAIN

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent–Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, a customer application in which the product of the respective products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative